We construct a quantum version of the SU(2) Hopf bundle S-7 -> S-4. The quantum sphere S-q(7) arises from the symplectic group Sp(q)(2) and a quantum 4-sphere S-q(4) is obtained via a suitable self-adjoint idempotent p whose entries generate the algebra A(S-q(4)) of polynomial functions over it. This projection determines a deformation of an (anti-)instanton bundle over the classical sphere S-4. We compute the fundamental K-homology class of S-q(4) and pair it with the class of p in the K-theory getting the value -1 for the topological charge. There is a right coaction of SUq(2) on S-q(7) such that the algebra A(S-q(7)) is a non-trivial quantum principal bundle over A(S-q(7)) with structure quantum group A(SUq(2)).
A Hopf bundle over a quantum four-sphere from the symplectic group / Landi, Giovanni; Pagani, C.; Reina, Cesare. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 263:1(2006), pp. 65-88. [10.1007/s00220-005-1494-3]
A Hopf bundle over a quantum four-sphere from the symplectic group
Landi, Giovanni;Reina, Cesare
2006-01-01
Abstract
We construct a quantum version of the SU(2) Hopf bundle S-7 -> S-4. The quantum sphere S-q(7) arises from the symplectic group Sp(q)(2) and a quantum 4-sphere S-q(4) is obtained via a suitable self-adjoint idempotent p whose entries generate the algebra A(S-q(4)) of polynomial functions over it. This projection determines a deformation of an (anti-)instanton bundle over the classical sphere S-4. We compute the fundamental K-homology class of S-q(4) and pair it with the class of p in the K-theory getting the value -1 for the topological charge. There is a right coaction of SUq(2) on S-q(7) such that the algebra A(S-q(7)) is a non-trivial quantum principal bundle over A(S-q(7)) with structure quantum group A(SUq(2)).File | Dimensione | Formato | |
---|---|---|---|
hopfbun.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
281.8 kB
Formato
Adobe PDF
|
281.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.