We study controllability issues for the 2D Euler and Navier- Stokes (NS) systems under periodic boundary conditions. These systems describe motion of homogeneous ideal or viscous incompressible fluid on a two-dimensional torus T^2. We assume the system to be controlled by a degenerate forcing applied to fixed number of modes. In our previous work [3, 5, 4] we studied global controllability by means of degenerate forcing for Navier-Stokes (NS) systems with nonvanishing viscosity (\nu > 0). Methods of dfferential geometric/Lie algebraic control theory have been used for that study. In [3] criteria for global controllability of nite-dimensional Galerkin approximations of 2D and 3D NS systems have been established. It is almost immediate to see that these criteria are also valid for the Galerkin approximations of the Euler systems. In [5, 4] we established a much more intricate suf- cient criteria for global controllability in finite-dimensional observed component and for L2-approximate controllability for 2D NS system. The justication of these criteria was based on a Lyapunov-Schmidt reduction to a finite-dimensional system. Possibility of such a reduction rested upon the dissipativity of NS system, and hence the previous approach can not be adapted for Euler system. In the present contribution we improve and extend the controllability results in several aspects: 1) we obtain a stronger sufficient condition for controllability of 2D NS system in an observed component and for L2- approximate controllability; 2) we prove that these criteria are valid for the case of ideal incompressible uid (\nu = 0); 3) we study solid controllability in projection on any finite-dimensional subspace and establish a sufficient criterion for such controllability.
Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing / Agrachev, A.; Sarychev, A. V.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 265:3(2006), pp. 673-697. [10.1007/s00220-006-0002-8]
Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing
Agrachev, A.;
2006-01-01
Abstract
We study controllability issues for the 2D Euler and Navier- Stokes (NS) systems under periodic boundary conditions. These systems describe motion of homogeneous ideal or viscous incompressible fluid on a two-dimensional torus T^2. We assume the system to be controlled by a degenerate forcing applied to fixed number of modes. In our previous work [3, 5, 4] we studied global controllability by means of degenerate forcing for Navier-Stokes (NS) systems with nonvanishing viscosity (\nu > 0). Methods of dfferential geometric/Lie algebraic control theory have been used for that study. In [3] criteria for global controllability of nite-dimensional Galerkin approximations of 2D and 3D NS systems have been established. It is almost immediate to see that these criteria are also valid for the Galerkin approximations of the Euler systems. In [5, 4] we established a much more intricate suf- cient criteria for global controllability in finite-dimensional observed component and for L2-approximate controllability for 2D NS system. The justication of these criteria was based on a Lyapunov-Schmidt reduction to a finite-dimensional system. Possibility of such a reduction rested upon the dissipativity of NS system, and hence the previous approach can not be adapted for Euler system. In the present contribution we improve and extend the controllability results in several aspects: 1) we obtain a stronger sufficient condition for controllability of 2D NS system in an observed component and for L2- approximate controllability; 2) we prove that these criteria are valid for the case of ideal incompressible uid (\nu = 0); 3) we study solid controllability in projection on any finite-dimensional subspace and establish a sufficient criterion for such controllability.File | Dimensione | Formato | |
---|---|---|---|
euler.pdf
Open Access dal 02/09/2007
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
362.37 kB
Formato
Adobe PDF
|
362.37 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.