The conformational conversion of the cellular prion protein (PrPC) into a misfolded, aggregated and infectious scrapie isoform is associated with prion disease pathology and neurodegeneration. Despite the significant number of experimental and theoretical studies the molecular mechanism regulating this structural transition is still poorly understood. Here, via Nuclear Magnetic Resonance (NMR) methodologies we investigate at the atomic level the mechanism of the human HuPrP(90-231) thermal unfolding and characterize the conformational equilibrium between its native structure and a beta-enriched intermediate state, named beta-PrPI. By comparing the folding mechanisms of metal-free and Cu2+-bound HuPrP(23-231) and HuPrP(90-231) we show that the coupling between the N- and C-terminal domains, through transient electrostatic interactions, is the key molecular process in tuning long-range correlated mu s-ms dynamics that in turn modulate the folding process. Moreover, via thioflavin T (ThT)-fluorescence fibrillization assays we show that beta-PrPI is involved in the initial stages of PrP fibrillation, overall providing a clear molecular description of the initial phases of prion misfolding. Finally, we show by using Real-Time Quaking-Induced Conversion (RT-QuIC) that the beta-PrPI acts as a seed for the formation of amyloid aggregates with a seeding activity comparable to that of human infectious prions.

Structural and dynamical determinants of a β-sheet-enriched intermediate involved in amyloid fibrillar assembly of human prion protein / Russo, Luigi; Salzano, Giulia; Corvino, Andrea; Bistaffa, Edoardo; Moda, Fabio; Celauro, Luigi; D'Abrosca, Gianluca; Isernia, Carla; Milardi, Danilo; Giachin, Gabriele; Malgieri, Gaetano; Legname, Giuseppe; Fattorusso, Roberto. - In: CHEMICAL SCIENCE. - ISSN 2041-6520. - 13:35(2022), pp. 10406-10427. [10.1039/d2sc00345g]

Structural and dynamical determinants of a β-sheet-enriched intermediate involved in amyloid fibrillar assembly of human prion protein

Salzano, Giulia;Bistaffa, Edoardo;Moda, Fabio;Celauro, Luigi;Giachin, Gabriele;Legname, Giuseppe
;
Fattorusso, Roberto
2022-01-01

Abstract

The conformational conversion of the cellular prion protein (PrPC) into a misfolded, aggregated and infectious scrapie isoform is associated with prion disease pathology and neurodegeneration. Despite the significant number of experimental and theoretical studies the molecular mechanism regulating this structural transition is still poorly understood. Here, via Nuclear Magnetic Resonance (NMR) methodologies we investigate at the atomic level the mechanism of the human HuPrP(90-231) thermal unfolding and characterize the conformational equilibrium between its native structure and a beta-enriched intermediate state, named beta-PrPI. By comparing the folding mechanisms of metal-free and Cu2+-bound HuPrP(23-231) and HuPrP(90-231) we show that the coupling between the N- and C-terminal domains, through transient electrostatic interactions, is the key molecular process in tuning long-range correlated mu s-ms dynamics that in turn modulate the folding process. Moreover, via thioflavin T (ThT)-fluorescence fibrillization assays we show that beta-PrPI is involved in the initial stages of PrP fibrillation, overall providing a clear molecular description of the initial phases of prion misfolding. Finally, we show by using Real-Time Quaking-Induced Conversion (RT-QuIC) that the beta-PrPI acts as a seed for the formation of amyloid aggregates with a seeding activity comparable to that of human infectious prions.
2022
13
35
10406
10427
https://doi.org/10.1039/D2SC00345G
Russo, Luigi; Salzano, Giulia; Corvino, Andrea; Bistaffa, Edoardo; Moda, Fabio; Celauro, Luigi; D'Abrosca, Gianluca; Isernia, Carla; Milardi, Danilo; ...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/133933
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact