We determine the semiclassical energy levels for the \phi^4 field theory in the broken symmetry phase on a 2D cylindrical geometry with antiperiodic boundary conditions by quantizing the appropriate finite--volume kink solutions. The analytic form of the kink scaling functions for arbitrary size of the system allows us to describe the flow between the twisted sector of c=1 CFT in the UV region and the massive particles in the IR limit. Kink-creating operators are shown to correspond in the UV limit to disorder fields of the c=1 CFT. The problem of the finite--volume spectrum for generic 2D Landau--Ginzburg models is also discussed.
Kink scaling functions in 2D non-integrable quantum field theories
Mussardo, Giuseppe;Delfino, Gesualdo
2006-01-01
Abstract
We determine the semiclassical energy levels for the \phi^4 field theory in the broken symmetry phase on a 2D cylindrical geometry with antiperiodic boundary conditions by quantizing the appropriate finite--volume kink solutions. The analytic form of the kink scaling functions for arbitrary size of the system allows us to describe the flow between the twisted sector of c=1 CFT in the UV region and the massive particles in the IR limit. Kink-creating operators are shown to correspond in the UV limit to disorder fields of the c=1 CFT. The problem of the finite--volume spectrum for generic 2D Landau--Ginzburg models is also discussed.File | Dimensione | Formato | |
---|---|---|---|
MRSD.pdf
non disponibili
Dimensione
329.26 kB
Formato
Unknown
|
329.26 kB | Unknown | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.