Given a bounded open set Ω ⊂ ℝ2, we study the relaxation of the nonparametric area functional in the strict topology in BV(Ω; ℝ2). and compute it for vortex-type maps, and more generally for maps in W1,1(Ω;S1) having a finite number of topological singularities. We also extend the analysis to some specific piecewise constant maps in BV(Ω;S1), including the symmetric triple junction map.
The relaxed area of ð1-valued singular maps in the strict BV -convergence / Bellettini, G.; Carano, S.; Scala, R.. - In: ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS. - ISSN 1262-3377. - 28:(2022), pp. 1-38. [10.1051/cocv/2022049]
The relaxed area of ð1-valued singular maps in the strict BV -convergence
Bellettini, G.;Carano, S.;Scala, R.
2022-01-01
Abstract
Given a bounded open set Ω ⊂ ℝ2, we study the relaxation of the nonparametric area functional in the strict topology in BV(Ω; ℝ2). and compute it for vortex-type maps, and more generally for maps in W1,1(Ω;S1) having a finite number of topological singularities. We also extend the analysis to some specific piecewise constant maps in BV(Ω;S1), including the symmetric triple junction map.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BCS_COCV.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
790.44 kB
Formato
Adobe PDF
|
790.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.