Background: Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. Results: This work introduces [Formula: see text]-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. [Formula: see text]-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, [Formula: see text]-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within [Formula: see text]-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying [Formula: see text]-ep, along with comprehensive implementation details and instructions for users. [Formula: see text]-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of [Formula: see text]-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. Conclusions: [Formula: see text]-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. [Formula: see text]-ep represents a valuable tool for conducting in silico patient-specific simulations.

lifex-ep: a robust and efficient software for cardiac electrophysiology simulations / Africa, Pasquale Claudio; Piersanti, Roberto; Regazzoni, Francesco; Bucelli, Michele; Salvador, Matteo; Fedele, Marco; Pagani, Stefano; Dede', Luca; Quarteroni, Alfio. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 24:1(2023), pp. 1-38. [10.1186/s12859-023-05513-8]

lifex-ep: a robust and efficient software for cardiac electrophysiology simulations

Africa, Pasquale Claudio;Dede', Luca;Quarteroni, Alfio
2023-01-01

Abstract

Background: Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. Results: This work introduces [Formula: see text]-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. [Formula: see text]-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, [Formula: see text]-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within [Formula: see text]-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying [Formula: see text]-ep, along with comprehensive implementation details and instructions for users. [Formula: see text]-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of [Formula: see text]-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. Conclusions: [Formula: see text]-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. [Formula: see text]-ep represents a valuable tool for conducting in silico patient-specific simulations.
2023
24
1
1
38
389
10.1186/s12859-023-05513-8
https://arxiv.org/abs/2308.01651
Africa, Pasquale Claudio; Piersanti, Roberto; Regazzoni, Francesco; Bucelli, Michele; Salvador, Matteo; Fedele, Marco; Pagani, Stefano; Dede', Luca; Quarteroni, Alfio
File in questo prodotto:
File Dimensione Formato  
s12859-023-05513-8.pdf

non disponibili

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.95 MB
Formato Adobe PDF
6.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/134530
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact