We compute, via motivic wall-crossing, the generating function of virtual motives of the Quot scheme of points on A(3), generalising to higher rank a result of Behrend-Bryan-Szendroi. We show that this motivic partition function converges to a Gaussian distribution, extending a result of Morrison.
Higher rank motivic Donaldson-Thomas invariants of A3 via wall-crossing, and asymptotics / Cazzaniga, A.; Ralaivaosaona, D.; Ricolfi, A. T.. - In: MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY. - ISSN 0305-0041. - 174:1(2022), pp. 97-122. [10.1017/s0305004122000159]
Higher rank motivic Donaldson-Thomas invariants of A3 via wall-crossing, and asymptotics
RICOLFI, A. T.
2022-01-01
Abstract
We compute, via motivic wall-crossing, the generating function of virtual motives of the Quot scheme of points on A(3), generalising to higher rank a result of Behrend-Bryan-Szendroi. We show that this motivic partition function converges to a Gaussian distribution, extending a result of Morrison.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
14. Higher rank motivic Donaldson–Thomas invariants of A3 via wall-crossing, and asymptotics.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
407.25 kB
Formato
Adobe PDF
|
407.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.