We compute, via motivic wall-crossing, the generating function of virtual motives of the Quot scheme of points on A(3), generalising to higher rank a result of Behrend-Bryan-Szendroi. We show that this motivic partition function converges to a Gaussian distribution, extending a result of Morrison.

Higher rank motivic Donaldson-Thomas invariants of A3 via wall-crossing, and asymptotics / Cazzaniga, A.; Ralaivaosaona, D.; Ricolfi, A. T.. - In: MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY. - ISSN 0305-0041. - 174:1(2022), pp. 97-122. [10.1017/s0305004122000159]

Higher rank motivic Donaldson-Thomas invariants of A3 via wall-crossing, and asymptotics

RICOLFI, A. T.
2022-01-01

Abstract

We compute, via motivic wall-crossing, the generating function of virtual motives of the Quot scheme of points on A(3), generalising to higher rank a result of Behrend-Bryan-Szendroi. We show that this motivic partition function converges to a Gaussian distribution, extending a result of Morrison.
2022
174
1
97
122
https://arxiv.org/abs/2004.07020
Cazzaniga, A.; Ralaivaosaona, D.; Ricolfi, A. T.
File in questo prodotto:
File Dimensione Formato  
14. Higher rank motivic Donaldson–Thomas invariants of A3 via wall-crossing, and asymptotics.pdf

accesso aperto

Licenza: Creative commons
Dimensione 407.25 kB
Formato Adobe PDF
407.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact