For a simple, rigid vector bundle F on a Calabi-Yau 3-fold Y, we construct a symmetric obstruction theory on the Quot scheme Quot(Y) (F, n), and we solve the associated enumerative theory. We discuss the case of other 3-folds. Exploiting the critical structure on the local model Quot(A3)(O-circle plus r,n), we construct a virtual motive (in the sense of Behrend-Bryan-Szendroi) for Quot(Y) (F, n) for an arbitrary vector bundle F on a smooth 3-fold Y. We compute the associated motivic partition function. We obtain new examples of higher rank (motivic) Donaldson-Thomas invariants. (C) 2020 Elsevier Inc. All rights reserved.
Virtual classes and virtual motives of Quot schemes on threefolds / Ricolfi, Andrea T.. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 369:(2020), pp. 1-32. [10.1016/j.aim.2020.107182]
Virtual classes and virtual motives of Quot schemes on threefolds
Ricolfi, Andrea T.
2020-01-01
Abstract
For a simple, rigid vector bundle F on a Calabi-Yau 3-fold Y, we construct a symmetric obstruction theory on the Quot scheme Quot(Y) (F, n), and we solve the associated enumerative theory. We discuss the case of other 3-folds. Exploiting the critical structure on the local model Quot(A3)(O-circle plus r,n), we construct a virtual motive (in the sense of Behrend-Bryan-Szendroi) for Quot(Y) (F, n) for an arbitrary vector bundle F on a smooth 3-fold Y. We compute the associated motivic partition function. We obtain new examples of higher rank (motivic) Donaldson-Thomas invariants. (C) 2020 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
10. Virtual classes and virtual motives of Quot schemes on threefolds.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
560.48 kB
Formato
Adobe PDF
|
560.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.