We show that the Quot scheme Quot A3(sigma, n) admits a symmetric obstruction theory, and we compute its virtual Euler characteristic. We extend the calculation to locally free sheaves on smooth 3‑folds, thus refining a special case of a recent Euler characteristic calculation of Gholampour–Kool. We then extend Toda’s higher rank DT/PT correspondence on Calabi–Yau 3‑folds to a local version centered at a fixed slope stable sheaf. This generalises (and refines) the local DT/PT correspondence around the cycle of a Cohen–Macaulay curve. Our approach clarifies the relation between Gholampour–Kool’s functional equation for Quot schemes, and Toda’s higher rank DT/PT correspondence.

Virtual counts on Quot schemes and the higher rank local DT/PT correspondence / Beentjes, S. V.; Ricolfi, A. T.. - In: MATHEMATICAL RESEARCH LETTERS. - ISSN 1073-2780. - 28:4(2021), pp. 967-1032. [10.4310/mrl.2021.v28.n4.a2]

Virtual counts on Quot schemes and the higher rank local DT/PT correspondence

Ricolfi, A. T.
2021-01-01

Abstract

We show that the Quot scheme Quot A3(sigma, n) admits a symmetric obstruction theory, and we compute its virtual Euler characteristic. We extend the calculation to locally free sheaves on smooth 3‑folds, thus refining a special case of a recent Euler characteristic calculation of Gholampour–Kool. We then extend Toda’s higher rank DT/PT correspondence on Calabi–Yau 3‑folds to a local version centered at a fixed slope stable sheaf. This generalises (and refines) the local DT/PT correspondence around the cycle of a Cohen–Macaulay curve. Our approach clarifies the relation between Gholampour–Kool’s functional equation for Quot schemes, and Toda’s higher rank DT/PT correspondence.
2021
28
4
967
1032
https://arxiv.org/abs/1811.09859
Beentjes, S. V.; Ricolfi, A. T.
File in questo prodotto:
File Dimensione Formato  
8. Virtual Counts on Quot schemes and the higher rank DT:PT correspondence.pdf

non disponibili

Licenza: Non specificato
Dimensione 629.07 kB
Formato Adobe PDF
629.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 7
social impact