In this paper we formulate and study scalar wave equations on domains with arbitrary growing cracks. This includes a zero Neumann condition on the crack sets, and the only assumptions on these sets are that they have bounded surface measure and are growing in the sense of set inclusion. In particular, they may be dense, so the weak formulations must fall outside of the usual weak formulations using Sobolev spaces. We study both damped and undamped equations, showing existence and, for the damped equation, uniqueness and energy conservation.
Existence for wave equations on domains with arbitrary growing cracks / Dal Maso, Gianni; Larsen, C. J.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 22:3(2011), pp. 387-408. [10.4171/RLM/606]
Existence for wave equations on domains with arbitrary growing cracks
Dal Maso, Gianni;
2011-01-01
Abstract
In this paper we formulate and study scalar wave equations on domains with arbitrary growing cracks. This includes a zero Neumann condition on the crack sets, and the only assumptions on these sets are that they have bounded surface measure and are growing in the sense of set inclusion. In particular, they may be dense, so the weak formulations must fall outside of the usual weak formulations using Sobolev spaces. We study both damped and undamped equations, showing existence and, for the damped equation, uniqueness and energy conservation.File | Dimensione | Formato | |
---|---|---|---|
DM-Lar-RendLincei2011.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
160.45 kB
Formato
Adobe PDF
|
160.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.