Shock capturing procedures are required to stabilise numerical simulations of gas dynamics problems featuring non-isentropic discontinuities. In the present work, particular attention is focused on the expected non-monotonicity of the entropy profile across shock waves. A peculiar physical property which was not considered so far in the evaluation of shock capturing techniques. In the context of high-order spectral difference methods and using most recent discontinuity sensors based on the decay rate of the modes of the amplitude of characteristic waves, results show how the choice of a physical-based procedure (additional viscosity) returns a better description of shocks compared to approaches relying on the direct addition of a Laplacian term in the solved equations. Various canonical compressible flows are simulated, in one-, two-, and three-dimensional setups, to illustrate the performance and flexibility of the proposed approach. It is shown that the addition of a well-calibrated bulk viscosity is capable of smoothing out discontinuities without an excessive damping of vortical structures, preserving also specific compressible flow physics, as the non-monotonic entropy profiles through the shocks.

Entropy preserving low dissipative shock capturing with wave-characteristic based sensor for high-order methods / Tonicello, N.; Lodato, G.; Vervisch, L.. - In: COMPUTERS & FLUIDS. - ISSN 0045-7930. - 197:(2020). [10.1016/j.compfluid.2019.104357]

Entropy preserving low dissipative shock capturing with wave-characteristic based sensor for high-order methods

Tonicello N.;
2020-01-01

Abstract

Shock capturing procedures are required to stabilise numerical simulations of gas dynamics problems featuring non-isentropic discontinuities. In the present work, particular attention is focused on the expected non-monotonicity of the entropy profile across shock waves. A peculiar physical property which was not considered so far in the evaluation of shock capturing techniques. In the context of high-order spectral difference methods and using most recent discontinuity sensors based on the decay rate of the modes of the amplitude of characteristic waves, results show how the choice of a physical-based procedure (additional viscosity) returns a better description of shocks compared to approaches relying on the direct addition of a Laplacian term in the solved equations. Various canonical compressible flows are simulated, in one-, two-, and three-dimensional setups, to illustrate the performance and flexibility of the proposed approach. It is shown that the addition of a well-calibrated bulk viscosity is capable of smoothing out discontinuities without an excessive damping of vortical structures, preserving also specific compressible flow physics, as the non-monotonic entropy profiles through the shocks.
2020
197
104357
Tonicello, N.; Lodato, G.; Vervisch, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact