A high-order low dissipative numerical framework is discussed to tackle simultaneously the modeling of unresolved sub-grid scale flow turbulence and the capturing of shock waves. The flows around two different airfoil profiles are simulated using a Spectral Difference discretisation scheme. First, a transitional, almost incompressible, low Reynolds number flow over a Selig-Donovan 7003 airfoil. Second, a high Reynolds number flow over a RAE2822 airfoil under transonic conditions. These flows feature both laminar and turbulent flow physics and are thus particularly challenging for turbulence sub-grid scale modeling. The accuracy of the recently developed Spectral Element Dynamic Model, specifically capable of detecting spatial under-resolution in high-order flow simulations, is evaluated. Concerning the test in transonic conditions, the additional complexity due to the presence of shock waves has been handled using an artificial viscosity shock-capturing technique based on bulk viscosity. To mitigate the impact of the shock-capturing on turbulence dissipation, it was necessary to combine the high-order modal-type shock detection with a usual sensor measuring the local flow compressibility.

Analysis of High-order Explicit LES Dynamic Modeling Applied to Airfoil Flows / Tonicello, N.; Lodato, G.; Vervisch, L.. - In: FLOW TURBULENCE AND COMBUSTION. - ISSN 1386-6184. - 108:1(2022), pp. 77-104. [10.1007/s10494-021-00273-y]

Analysis of High-order Explicit LES Dynamic Modeling Applied to Airfoil Flows

Tonicello N.
;
2022-01-01

Abstract

A high-order low dissipative numerical framework is discussed to tackle simultaneously the modeling of unresolved sub-grid scale flow turbulence and the capturing of shock waves. The flows around two different airfoil profiles are simulated using a Spectral Difference discretisation scheme. First, a transitional, almost incompressible, low Reynolds number flow over a Selig-Donovan 7003 airfoil. Second, a high Reynolds number flow over a RAE2822 airfoil under transonic conditions. These flows feature both laminar and turbulent flow physics and are thus particularly challenging for turbulence sub-grid scale modeling. The accuracy of the recently developed Spectral Element Dynamic Model, specifically capable of detecting spatial under-resolution in high-order flow simulations, is evaluated. Concerning the test in transonic conditions, the additional complexity due to the presence of shock waves has been handled using an artificial viscosity shock-capturing technique based on bulk viscosity. To mitigate the impact of the shock-capturing on turbulence dissipation, it was necessary to combine the high-order modal-type shock detection with a usual sensor measuring the local flow compressibility.
2022
108
1
77
104
Tonicello, N.; Lodato, G.; Vervisch, L.
File in questo prodotto:
File Dimensione Formato  
FTC01.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 3.39 MB
Formato Adobe PDF
3.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135172
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact