We define bilinear functionals of vector fields and differential forms, the densities of which yield the metric and Einstein tensors on even-dimensional Riemannian manifolds. We generalise these concepts in non-commutative geometry and, in particular, we prove that for the conformally rescaled geometry of the noncommutative two-torus the Einstein functional vanishes.

Spectral metric and Einstein functionals / Dabrowski, Ludwik; Sitarz, Andrzej; Zalecki, Pawel. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 427:(2023). [10.1016/j.aim.2023.109128]

Spectral metric and Einstein functionals

Ludwik Dabrowski;
2023-01-01

Abstract

We define bilinear functionals of vector fields and differential forms, the densities of which yield the metric and Einstein tensors on even-dimensional Riemannian manifolds. We generalise these concepts in non-commutative geometry and, in particular, we prove that for the conformally rescaled geometry of the noncommutative two-torus the Einstein functional vanishes.
2023
427
109128
https://arxiv.org/abs/2206.02587
Dabrowski, Ludwik; Sitarz, Andrzej; Zalecki, Pawel
File in questo prodotto:
File Dimensione Formato  
arxiv 2206.02587.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 357.68 kB
Formato Adobe PDF
357.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact