Optimal convergence rates for the mimetic finite difference method applied to eigenvalue problems in mixed form are proved. The analysis is based on a new a priori error bound for the source problem and relies on the existence of an appropriate elemental lifting of the mimetic discrete solution. Compared to the original convergence analysis of the method, the new a priori estimate does not require any extra regularity assumption on the right-hand side of the source problem. Numerical results confirming the optimal behavior of the method are presented. © 2010 Elsevier B.V.
Convergence of the mimetic finite difference method for eigenvalue problems in mixed form / Cangiani, A.; Gardini, F.; Manzini, G.. - In: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. - ISSN 0045-7825. - 200:9-12(2011), pp. 1150-1160. [10.1016/j.cma.2010.06.011]
Convergence of the mimetic finite difference method for eigenvalue problems in mixed form
Cangiani A.;
2011-01-01
Abstract
Optimal convergence rates for the mimetic finite difference method applied to eigenvalue problems in mixed form are proved. The analysis is based on a new a priori error bound for the source problem and relies on the existence of an appropriate elemental lifting of the mimetic discrete solution. Compared to the original convergence analysis of the method, the new a priori estimate does not require any extra regularity assumption on the right-hand side of the source problem. Numerical results confirming the optimal behavior of the method are presented. © 2010 Elsevier B.V.File | Dimensione | Formato | |
---|---|---|---|
Cangiani-Gardini-Manzini_CMAME_2011.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
781.84 kB
Formato
Adobe PDF
|
781.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.