Transition-metal nitrides have attracted much interest of the scientific community for their intriguing properties and technological applications. Here, we focus on yttrium dinitride (YN2) and its formation and structural transition under pressure. We employed a fixed composition USPEX search to find the most stable polymorphs. We choose yttrium as a proxy for the lanthanide series because it has only +3 oxidation state, contrary to most transition metals. We then computed the thermodynamic and dynamical stabilities of these structures compared to the decomposition reactions, and we found that the compound undergoes two structural transitions, the latter showing the formation of N-4 chains. A closer look into the nature of the nitrogen bonding showed that in the first two structures, where nitrogen forms dimers, the bond length is intermediate between that of a single bond and that of a double bond, making it hard to rationalize the proper oxidation state configuration for YN2. In the latter structure, where there is formation of N-4 chains, the bond lengths increase significantly up to a value that can be justified as a single bond. Finally, we also studied the electronic structure and dynamical stability of the structures we found.

High pressure computational search of trivalent lanthanide di-nitrides / Menescardi, F.; Ehrenreich-Petersen, E.; Ceresoli, D.. - In: JOURNAL OF PHYSICAL CHEMISTRY. C.. - ISSN 1932-7455. - 125:1(2021), pp. 161-167. [10.1021/acs.jpcc.0c08904]

High pressure computational search of trivalent lanthanide di-nitrides

Menescardi F.;Ceresoli D.
2021-01-01

Abstract

Transition-metal nitrides have attracted much interest of the scientific community for their intriguing properties and technological applications. Here, we focus on yttrium dinitride (YN2) and its formation and structural transition under pressure. We employed a fixed composition USPEX search to find the most stable polymorphs. We choose yttrium as a proxy for the lanthanide series because it has only +3 oxidation state, contrary to most transition metals. We then computed the thermodynamic and dynamical stabilities of these structures compared to the decomposition reactions, and we found that the compound undergoes two structural transitions, the latter showing the formation of N-4 chains. A closer look into the nature of the nitrogen bonding showed that in the first two structures, where nitrogen forms dimers, the bond length is intermediate between that of a single bond and that of a double bond, making it hard to rationalize the proper oxidation state configuration for YN2. In the latter structure, where there is formation of N-4 chains, the bond lengths increase significantly up to a value that can be justified as a single bond. Finally, we also studied the electronic structure and dynamical stability of the structures we found.
2021
125
1
161
167
Menescardi, F.; Ehrenreich-Petersen, E.; Ceresoli, D.
File in questo prodotto:
File Dimensione Formato  
Menescardi, Ehrenreich-petersen, Ceresoli - 2021 - High-Pressure Computational Search of Trivalent Lanthanide Dinitrides.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135317
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact