We construct a Riemannian metric g on R4(arbitrarily close to the euclidean one) and a smooth simple closed curve Γ ⊂ R4such that the unique area minimizing surface spanned by Γ has infinite topology. Furthermore the metric is almost Kähler and the area minimizing surface is calibrated.

Nonclassical minimizing surfaces with smooth boundary / De Lellis, C.; De Philippis, G.; Hirsch, J.. - In: JOURNAL OF DIFFERENTIAL GEOMETRY. - ISSN 0022-040X. - 122:2(2022), pp. 205-222. [10.4310/JDG/1669998183]

Nonclassical minimizing surfaces with smooth boundary

De Lellis C.;De Philippis G.;
2022-01-01

Abstract

We construct a Riemannian metric g on R4(arbitrarily close to the euclidean one) and a smooth simple closed curve Γ ⊂ R4such that the unique area minimizing surface spanned by Γ has infinite topology. Furthermore the metric is almost Kähler and the area minimizing surface is calibrated.
2022
122
2
205
222
https://arxiv.org/abs/1906.09488
De Lellis, C.; De Philippis, G.; Hirsch, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135472
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact