We prove a regularity theorem for the free boundary of minimizers of the two-phase Bernoulli problem, completing the analysis started by Alt, Caffarelli and Friedman in the 80s. As a consequence, we also show regularity of minimizers of the multiphase spectral optimization problem for the principal eigenvalue of the Dirichlet Laplacian.
Regularity of the free boundary for the two-phase Bernoulli problem / De Philippis, G.; Spolaor, L.; Velichkov, B.. - In: INVENTIONES MATHEMATICAE. - ISSN 0020-9910. - 225:2(2021), pp. 347-394. [10.1007/s00222-021-01031-7]
Regularity of the free boundary for the two-phase Bernoulli problem
De Philippis G.;
2021-01-01
Abstract
We prove a regularity theorem for the free boundary of minimizers of the two-phase Bernoulli problem, completing the analysis started by Alt, Caffarelli and Friedman in the 80s. As a consequence, we also show regularity of minimizers of the multiphase spectral optimization problem for the principal eigenvalue of the Dirichlet Laplacian.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.