We prove that on a smooth bounded set, the positive least energy solution of the Lane-Emden equation with sublinear power is isolated. As a corollary, we obtain that the first (Formula presented.) eigenvalue of the Dirichlet-Laplacian is not an accumulation point of the (Formula presented.) spectrum, on a smooth bounded set. Our results extend to a suitable class of Lipschitz domains, as well.

Positive solutions to the sublinear Lane-Emden equation are isolated / Brasco, L.; De Philippis, G.; Franzina, G.. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - 46:10(2021), pp. 1940-1972. [10.1080/03605302.2021.1920613]

Positive solutions to the sublinear Lane-Emden equation are isolated

De Philippis G.;Franzina G.
2021-01-01

Abstract

We prove that on a smooth bounded set, the positive least energy solution of the Lane-Emden equation with sublinear power is isolated. As a corollary, we obtain that the first (Formula presented.) eigenvalue of the Dirichlet-Laplacian is not an accumulation point of the (Formula presented.) spectrum, on a smooth bounded set. Our results extend to a suitable class of Lipschitz domains, as well.
2021
46
10
1940
1972
https://arxiv.org/abs/1911.09163
Brasco, L.; De Philippis, G.; Franzina, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact