We prove that for a suitable class of metric measure spaces the abstract notion of tangent module as defined by the first author can be isometrically identified with the space of L2-sections of the ‘Gromov-Hausdorff tangent bundle’. The key assumption that we make is a form of rectifiability for which the space is ‘almost isometrically’ rectifiable (up to m-null sets) via maps that keep under control the reference measure. We point out that RCD∗(K, N) spaces fit in our framework.

Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces / Gigli, N.; Pasqualetto, E.. - In: COMMUNICATIONS IN ANALYSIS AND GEOMETRY. - ISSN 1019-8385. - 30:1(2022), pp. 1-51. [10.4310/CAG.2022.V30.N1.A1]

Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces

Gigli N.;Pasqualetto E.
2022-01-01

Abstract

We prove that for a suitable class of metric measure spaces the abstract notion of tangent module as defined by the first author can be isometrically identified with the space of L2-sections of the ‘Gromov-Hausdorff tangent bundle’. The key assumption that we make is a form of rectifiability for which the space is ‘almost isometrically’ rectifiable (up to m-null sets) via maps that keep under control the reference measure. We point out that RCD∗(K, N) spaces fit in our framework.
2022
30
1
1
51
https://arxiv.org/abs/1611.09645
Gigli, N.; Pasqualetto, E.
File in questo prodotto:
File Dimensione Formato  
GHTM.pdf

accesso aperto

Descrizione: postprint
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 515.52 kB
Formato Adobe PDF
515.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact