We show that several different interpretations of the inequality Δf ≤ η are equivalent in the setting of RCD(K,N) spaces. With respect to previously available results in this direction, we improve both on the generality of the underlying space and in terms of regularity to be assumed on the function f. Applications are presented.

On the notion of Laplacian bounds on RCD spaces and applications / Gigli, Nicola; Mondino, Andrea; Semola, Daniele. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - (2024), pp. 1-12. [10.1090/proc/16550]

On the notion of Laplacian bounds on RCD spaces and applications

Gigli,Nicola;Mondino, Andrea;Semola, Daniele
2024-01-01

Abstract

We show that several different interpretations of the inequality Δf ≤ η are equivalent in the setting of RCD(K,N) spaces. With respect to previously available results in this direction, we improve both on the generality of the underlying space and in terms of regularity to be assumed on the function f. Applications are presented.
2024
1
12
https://www.ams.org/journals/proc/0000-000-00/S0002-9939-2023-16550-8/S0002-9939-2023-16550-8.pdf
Gigli, Nicola; Mondino, Andrea; Semola, Daniele
File in questo prodotto:
File Dimensione Formato  
laplacian RCD-Final.pdf

non disponibili

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 385.41 kB
Formato Adobe PDF
385.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact