The Freud ensemble of random matrices is the unitary invariant ensemble corresponding to the weight exp(-n vertical bar x vertical bar(beta)), beta > 0, on the real line. We consider the local behaviour of eigenvalues near zero, which exhibits a transition in beta. If beta >= 1, it is described by the standard sine process. Below the critical value beta = 1, it is described by a process depending on the value of beta, and we determine the first two terms of the large gap probability in it. This so called weak confinement range 0 < beta < 1 corresponds to the Freud weight with the indeterminate moment problem. We also find the multiplicative constant in the asymptotic expansion of the Freud multiple integral for beta >= 1.

Weak and Strong Confinement in the Freud Random Matrix Ensemble and Gap Probabilities / Claeys, T.; Krasovsky, I.; Minakov, O.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 402:1(2023), pp. 833-894. [10.1007/s00220-023-04749-y]

Weak and Strong Confinement in the Freud Random Matrix Ensemble and Gap Probabilities

Krasovsky, I.;
2023-01-01

Abstract

The Freud ensemble of random matrices is the unitary invariant ensemble corresponding to the weight exp(-n vertical bar x vertical bar(beta)), beta > 0, on the real line. We consider the local behaviour of eigenvalues near zero, which exhibits a transition in beta. If beta >= 1, it is described by the standard sine process. Below the critical value beta = 1, it is described by a process depending on the value of beta, and we determine the first two terms of the large gap probability in it. This so called weak confinement range 0 < beta < 1 corresponds to the Freud weight with the indeterminate moment problem. We also find the multiplicative constant in the asymptotic expansion of the Freud multiple integral for beta >= 1.
2023
402
1
833
894
https://arxiv.org/abs/2209.07253
Claeys, T.; Krasovsky, I.; Minakov, O.
File in questo prodotto:
File Dimensione Formato  
2209.07253.pdf

embargo fino al 01/01/2025

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 578.95 kB
Formato Adobe PDF
578.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
s00220-023-04749-y.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 884.01 kB
Formato Adobe PDF
884.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact