We show that the dual partition function of the pure N = 2 SU (2) gauge theory in the self-dual Omega-background (a) is given by Fredholm determinant of a generalized Bessel kernel and (b) coincides with the tau function associated to the general solution of the Painleve III equation of type D-8 (radial sine-Gordon equation). In particular, the principal minor expansion of the Fredholm determinant yields Nekrasov combinatorial sums over pairs of Young diagrams.

Pure SU(2) gauge theory partition function and generalized Bessel kernel / Gavrylenko, P.; Lisovyy, O.. - 98:(2018), pp. 181-205. (Intervento presentato al convegno String Math 2016 tenutosi a Paris, France nel June 27-July 2, 2016,) [10.1090/pspum/098/01727].

Pure SU(2) gauge theory partition function and generalized Bessel kernel

Gavrylenko, P.;
2018-01-01

Abstract

We show that the dual partition function of the pure N = 2 SU (2) gauge theory in the self-dual Omega-background (a) is given by Fredholm determinant of a generalized Bessel kernel and (b) coincides with the tau function associated to the general solution of the Painleve III equation of type D-8 (radial sine-Gordon equation). In particular, the principal minor expansion of the Fredholm determinant yields Nekrasov combinatorial sums over pairs of Young diagrams.
2018
String-Math 2016
98
181
205
9781470435158
9781470447700
dx.doi.org/10.1090/PSPUM/098/01727
AMER MATHEMATICAL SOC
Gavrylenko, P.; Lisovyy, O.
File in questo prodotto:
File Dimensione Formato  
1705.01869.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 377.39 kB
Formato Adobe PDF
377.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact