We show that the dual partition function of the pure N = 2 SU (2) gauge theory in the self-dual Omega-background (a) is given by Fredholm determinant of a generalized Bessel kernel and (b) coincides with the tau function associated to the general solution of the Painleve III equation of type D-8 (radial sine-Gordon equation). In particular, the principal minor expansion of the Fredholm determinant yields Nekrasov combinatorial sums over pairs of Young diagrams.
Pure SU(2) gauge theory partition function and generalized Bessel kernel / Gavrylenko, P.; Lisovyy, O.. - 98:(2018), pp. 181-205. (Intervento presentato al convegno String Math 2016 tenutosi a Paris, France nel June 27-July 2, 2016,) [10.1090/pspum/098/01727].
Pure SU(2) gauge theory partition function and generalized Bessel kernel
Gavrylenko, P.;
2018-01-01
Abstract
We show that the dual partition function of the pure N = 2 SU (2) gauge theory in the self-dual Omega-background (a) is given by Fredholm determinant of a generalized Bessel kernel and (b) coincides with the tau function associated to the general solution of the Painleve III equation of type D-8 (radial sine-Gordon equation). In particular, the principal minor expansion of the Fredholm determinant yields Nekrasov combinatorial sums over pairs of Young diagrams.File | Dimensione | Formato | |
---|---|---|---|
1705.01869.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
377.39 kB
Formato
Adobe PDF
|
377.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.