We prove a compactness result with respect to G-convergence for a class of integral functionals which are expressed as a sum of a local and a non-local term. The main feature is that, under our hypotheses, the local part of the G-limit depends on the interaction between the local and non-local terms of the converging subsequence. The result is applied to concentration and homogenization problems.
Compactness for a class of integral functionals with interacting local and non-local terms / Braides, A; Dal Maso, G. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 62:5(2023), pp. 1-28. [10.1007/s00526-023-02491-w]
Compactness for a class of integral functionals with interacting local and non-local terms
Braides, A
;Dal Maso, G
2023-01-01
Abstract
We prove a compactness result with respect to G-convergence for a class of integral functionals which are expressed as a sum of a local and a non-local term. The main feature is that, under our hypotheses, the local part of the G-limit depends on the interaction between the local and non-local terms of the converging subsequence. The result is applied to concentration and homogenization problems.File | Dimensione | Formato | |
---|---|---|---|
2212.11703.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
300.84 kB
Formato
Adobe PDF
|
300.84 kB | Adobe PDF | Visualizza/Apri |
s00526-023-02491-w.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
467.67 kB
Formato
Adobe PDF
|
467.67 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.