We prove a compactness result with respect to G-convergence for a class of integral functionals which are expressed as a sum of a local and a non-local term. The main feature is that, under our hypotheses, the local part of the G-limit depends on the interaction between the local and non-local terms of the converging subsequence. The result is applied to concentration and homogenization problems.

Compactness for a class of integral functionals with interacting local and non-local terms / Braides, A; Dal Maso, G. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 62:5(2023), pp. 1-28. [10.1007/s00526-023-02491-w]

Compactness for a class of integral functionals with interacting local and non-local terms

Braides, A
;
Dal Maso, G
2023-01-01

Abstract

We prove a compactness result with respect to G-convergence for a class of integral functionals which are expressed as a sum of a local and a non-local term. The main feature is that, under our hypotheses, the local part of the G-limit depends on the interaction between the local and non-local terms of the converging subsequence. The result is applied to concentration and homogenization problems.
2023
62
5
1
28
148
https://doi.org/10.1007/s00526-023-02491-w
https://arxiv.org/abs/2212.11703
Braides, A; Dal Maso, G
File in questo prodotto:
File Dimensione Formato  
2212.11703.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 300.84 kB
Formato Adobe PDF
300.84 kB Adobe PDF Visualizza/Apri
s00526-023-02491-w.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 467.67 kB
Formato Adobe PDF
467.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact