We prove that quadratic pair interactions for functions defined on planar Poisson clouds and taking into account pairs of sites of distance up to a certain (large-enough) threshold can be almost surely approximated by the multiple of the Dirichlet energy by a deterministic constant. This is achieved by scaling the Poisson cloud and the corresponding energies and computing a compact discrete-to-continuum limit. In order to avoid the effect of exceptional regions of the Poisson cloud, with an accumulation of sites or with 'disconnected' sites, a suitable 'coarse-grained' notion of convergence of functions defined on scaled Poisson clouds must be given.

Asymptotic Behavior of the Dirichlet Energy on Poisson Point Clouds / Braides, Andrea; Caroccia, Marco. - In: JOURNAL OF NONLINEAR SCIENCE. - ISSN 0938-8974. - 33:5(2023). [10.1007/s00332-023-09937-7]

Asymptotic Behavior of the Dirichlet Energy on Poisson Point Clouds

Andrea Braides;
2023-01-01

Abstract

We prove that quadratic pair interactions for functions defined on planar Poisson clouds and taking into account pairs of sites of distance up to a certain (large-enough) threshold can be almost surely approximated by the multiple of the Dirichlet energy by a deterministic constant. This is achieved by scaling the Poisson cloud and the corresponding energies and computing a compact discrete-to-continuum limit. In order to avoid the effect of exceptional regions of the Poisson cloud, with an accumulation of sites or with 'disconnected' sites, a suitable 'coarse-grained' notion of convergence of functions defined on scaled Poisson clouds must be given.
2023
33
5
80
10.1007/s00332-023-09937-7
Braides, Andrea; Caroccia, Marco
File in questo prodotto:
File Dimensione Formato  
2203.16877.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF Visualizza/Apri
Asymptotic.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.47 MB
Formato Adobe PDF
4.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135817
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact