We study the effect of membrane viscosity in the dynamics of liquid membranes-possibly with free or internal boundaries-driven by conservative forces (curvature elasticity and line tension) and dragged by the bulk dissipation of the ambient fluid and the friction occurring when the amphiphilic molecules move relative to each other. To this end, we formulate a continuum model which includes a form of the governing equations for a two-dimensional viscous fluid moving on a curved, time-evolving surface. The effect of membrane viscosity has received very limited attention in previous continuum studies of the dynamics of fluid membranes, although recent coarse-grained discrete simulations suggest its importance. By applying our model to the study of vesiculation and membrane fusion in a simplified geometry, we conclude that membrane viscosity plays a dominant role in the relaxation dynamics of fluid membranes of sizes comparable to those found in eukaryotic cells, and is not negligible in many large synthetic systems of current interest.

Relaxation dynamics of fluid membranes / Arroyo, M; Desimone, A. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 79:3(2009), pp. 031915-1-031915-17. [10.1103/PhysRevE.79.031915]

Relaxation dynamics of fluid membranes

DeSimone, A
2009-01-01

Abstract

We study the effect of membrane viscosity in the dynamics of liquid membranes-possibly with free or internal boundaries-driven by conservative forces (curvature elasticity and line tension) and dragged by the bulk dissipation of the ambient fluid and the friction occurring when the amphiphilic molecules move relative to each other. To this end, we formulate a continuum model which includes a form of the governing equations for a two-dimensional viscous fluid moving on a curved, time-evolving surface. The effect of membrane viscosity has received very limited attention in previous continuum studies of the dynamics of fluid membranes, although recent coarse-grained discrete simulations suggest its importance. By applying our model to the study of vesiculation and membrane fusion in a simplified geometry, we conclude that membrane viscosity plays a dominant role in the relaxation dynamics of fluid membranes of sizes comparable to those found in eukaryotic cells, and is not negligible in many large synthetic systems of current interest.
2009
79
3
031915-1
031915-17
https://europepmc.org/abstract/med/19391979
Arroyo, M; Desimone, A
File in questo prodotto:
File Dimensione Formato  
PRE_Published.pdf

non disponibili

Licenza: Non specificato
Dimensione 482.5 kB
Formato Adobe PDF
482.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/13646
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 158
  • ???jsp.display-item.citation.isi??? 153
social impact