: We perform a numerical study of transport properties of a one-dimensional chain with couplings decaying as an inverse power r^{-(1+σ)} of the intersite distance r and open boundary conditions, interacting with two heat reservoirs. Despite its simplicity, the model displays highly nontrivial features in the strong long-range regime -1<0. At weak coupling with the reservoirs, the energy flux departs from the predictions of perturbative theory and displays anomalous superdiffusive scaling of the heat current with the chain size. We trace this behavior back to the transmission spectrum of the chain, which displays a self-similar structure with a characteristic σ-dependent fractal dimension.

Nonequilibrium steady states of long-range coupled harmonic chains / Andreucci, Francesco; Lepri, Stefano; Ruffo, Stefano; Trombettoni, Andrea. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 108:2(2023), pp. 1-8. [10.1103/PhysRevE.108.024115]

Nonequilibrium steady states of long-range coupled harmonic chains

Andreucci, Francesco;Lepri, Stefano;Ruffo, Stefano;Trombettoni, Andrea
2023-01-01

Abstract

: We perform a numerical study of transport properties of a one-dimensional chain with couplings decaying as an inverse power r^{-(1+σ)} of the intersite distance r and open boundary conditions, interacting with two heat reservoirs. Despite its simplicity, the model displays highly nontrivial features in the strong long-range regime -1<0. At weak coupling with the reservoirs, the energy flux departs from the predictions of perturbative theory and displays anomalous superdiffusive scaling of the heat current with the chain size. We trace this behavior back to the transmission spectrum of the chain, which displays a self-similar structure with a characteristic σ-dependent fractal dimension.
2023
108
2
1
8
024115
Andreucci, Francesco; Lepri, Stefano; Ruffo, Stefano; Trombettoni, Andrea
File in questo prodotto:
File Dimensione Formato  
2305.00536 (1).pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/136511
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact