We analyze the evolution of the eective potential and the particle spectrum of two- parameter families of non-integrable quantum eld theories. These theories are dened by deformations of conformal minimal models Mm by using the operators Φ1,3, Φ1,2 and Φ2,1. This study extends to all minimal models the analysis previously done for the classes of universality of the Ising, the Tricritical Ising and the RSOS models. We establish the sym- metry and the duality properties of the various models also identifying the limiting theories that emerge when m → ∞.

Effective potentials and kink spectra in non-integrable perturbed conformal field theories / Mussardo, G.; Takács, G.. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 42:30(2009), pp. 1-26. [10.1088/1751-8113/42/30/304022]

Effective potentials and kink spectra in non-integrable perturbed conformal field theories

Mussardo, G.;
2009-01-01

Abstract

We analyze the evolution of the eective potential and the particle spectrum of two- parameter families of non-integrable quantum eld theories. These theories are dened by deformations of conformal minimal models Mm by using the operators Φ1,3, Φ1,2 and Φ2,1. This study extends to all minimal models the analysis previously done for the classes of universality of the Ising, the Tricritical Ising and the RSOS models. We establish the sym- metry and the duality properties of the various models also identifying the limiting theories that emerge when m → ∞.
2009
42
30
1
26
304022
https://arxiv.org/abs/0901.3537
Mussardo, G.; Takács, G.
File in questo prodotto:
File Dimensione Formato  
JPA 1751-8121_42_30_304022.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 572.06 kB
Formato Adobe PDF
572.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/13660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact