This paper investigates the clustering properties of Submillimetre Common User Bolometric Array (SCUBA) selected galaxies within the framework of a unifying scheme relating the formation of quasi-stellar objects and spheroids. The theoretical angular correlation function is derived for different bias functions, corresponding to different values of the ratio Mh(alo)/M-sph between the mass of the dark halo and the final mass in stars. SCUBA sources are predicted to be strongly clustered, with a clustering strength increasing with mass. We show that the model accounts for the clustering of Lyman-break galaxies, seen as the optical counterpart of low- to intermediate-mass primeval spheroidal galaxies, and is also consistent with the observed angular correlation function of extremely red objects. Best agreement is obtained for M-halo/M-sph = 100. We also consider the implications for small-scale fluctuations observed at submillimetre wavelengths by current or forthcoming experiments aimed at mapping the cosmic microwave background (CMB). The predicted amplitude of the clustering signal in the 350-GHz channel of the Planck mission strongly depends on the halo-to-bulge mass ratio and may be of comparable amplitude to primary CMB anisotropies for multipole numbers 1 greater than or similar to 50.

Theoretical predictions on the clustering of SCUBA galaxies and implications for small-scale fluctuations at submillimetre wavelengths

Danese, Luigi
2001-01-01

Abstract

This paper investigates the clustering properties of Submillimetre Common User Bolometric Array (SCUBA) selected galaxies within the framework of a unifying scheme relating the formation of quasi-stellar objects and spheroids. The theoretical angular correlation function is derived for different bias functions, corresponding to different values of the ratio Mh(alo)/M-sph between the mass of the dark halo and the final mass in stars. SCUBA sources are predicted to be strongly clustered, with a clustering strength increasing with mass. We show that the model accounts for the clustering of Lyman-break galaxies, seen as the optical counterpart of low- to intermediate-mass primeval spheroidal galaxies, and is also consistent with the observed angular correlation function of extremely red objects. Best agreement is obtained for M-halo/M-sph = 100. We also consider the implications for small-scale fluctuations observed at submillimetre wavelengths by current or forthcoming experiments aimed at mapping the cosmic microwave background (CMB). The predicted amplitude of the clustering signal in the 350-GHz channel of the Planck mission strongly depends on the halo-to-bulge mass ratio and may be of comparable amplitude to primary CMB anisotropies for multipole numbers 1 greater than or similar to 50.
2001
325
4
1553
1558
Magliocchetti, M; Moscardini, L; Panuzzo, P; Granato, Gl; De Zotti, G; Danese, Luigi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/13682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 30
social impact