We prove an equality, predicted in the physical literature, between the Jeffrey–Kirwan residues of certain explicit meromorphic forms attached to a quiver without loops or oriented cycles and its Donaldson–Thomas type invariants. In the special case of complete bipartite quivers we also show independently, using scattering diagrams and theta functions, that the same Jeffrey–Kirwan residues are determined by the the Gross–Hacking–Keel mirror family to a log Calabi–Yau surface.
Log Calabi–Yau surfaces and Jeffrey-Kirwan residues / Ontani, Riccardo; Stoppa, Jacopo. - In: MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY. - ISSN 0305-0041. - 176:3(2024), pp. 547-592. [10.1017/S0305004124000033]
Log Calabi–Yau surfaces and Jeffrey-Kirwan residues
Ontani, Riccardo;Stoppa, Jacopo
2024-01-01
Abstract
We prove an equality, predicted in the physical literature, between the Jeffrey–Kirwan residues of certain explicit meromorphic forms attached to a quiver without loops or oriented cycles and its Donaldson–Thomas type invariants. In the special case of complete bipartite quivers we also show independently, using scattering diagrams and theta functions, that the same Jeffrey–Kirwan residues are determined by the the Gross–Hacking–Keel mirror family to a log Calabi–Yau surface.File | Dimensione | Formato | |
---|---|---|---|
LCY.pdf
non disponibili
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
504.36 kB
Formato
Adobe PDF
|
504.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.