We prove an equality, predicted in the physical literature, between the Jeffrey–Kirwan residues of certain explicit meromorphic forms attached to a quiver without loops or oriented cycles and its Donaldson–Thomas type invariants. In the special case of complete bipartite quivers we also show independently, using scattering diagrams and theta functions, that the same Jeffrey–Kirwan residues are determined by the the Gross–Hacking–Keel mirror family to a log Calabi–Yau surface.

Log Calabi–Yau surfaces and Jeffrey-Kirwan residues / Ontani, Riccardo; Stoppa, Jacopo. - In: MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY. - ISSN 0305-0041. - 176:3(2024), pp. 547-592. [10.1017/S0305004124000033]

Log Calabi–Yau surfaces and Jeffrey-Kirwan residues

Ontani, Riccardo;Stoppa, Jacopo
2024-01-01

Abstract

We prove an equality, predicted in the physical literature, between the Jeffrey–Kirwan residues of certain explicit meromorphic forms attached to a quiver without loops or oriented cycles and its Donaldson–Thomas type invariants. In the special case of complete bipartite quivers we also show independently, using scattering diagrams and theta functions, that the same Jeffrey–Kirwan residues are determined by the the Gross–Hacking–Keel mirror family to a log Calabi–Yau surface.
2024
176
3
547
592
https://arxiv.org/abs/2109.13048
Ontani, Riccardo; Stoppa, Jacopo
File in questo prodotto:
File Dimensione Formato  
LCY.pdf

non disponibili

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 504.36 kB
Formato Adobe PDF
504.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/136951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact