We discuss fermion mass hierarchies within modular invariant flavour models. We analyse the neighbourhood of the self-dual point τ = i, where modular invariant theories possess a residual Z4 invariance. In this region the breaking of Z4 can be fully described by the spurion ϵ ≈ τ − i, that flips its sign under Z4. Degeneracies or vanishing eigenvalues of fermion mass matrices, forced by the Z4 symmetry at τ = i, are removed by slightly deviating from the self-dual point. Relevant mass ratios are controlled by powers of |ϵ|. We present examples where this mechanism is a key ingredient to successfully implement an hierarchical spectrum in the lepton sector, even in the presence of a non-minimal Kähler potential.

Modular invariant dynamics and fermion mass hierarchies around τ = i / Feruglio, F.; Gherardi, V.; Romanino, A.; Titov, A.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2021:5(2021), pp. 1-26. [10.1007/JHEP05(2021)242]

Modular invariant dynamics and fermion mass hierarchies around τ = i

Feruglio, F.;Gherardi, V.;Romanino, A.;Titov, A.
2021-01-01

Abstract

We discuss fermion mass hierarchies within modular invariant flavour models. We analyse the neighbourhood of the self-dual point τ = i, where modular invariant theories possess a residual Z4 invariance. In this region the breaking of Z4 can be fully described by the spurion ϵ ≈ τ − i, that flips its sign under Z4. Degeneracies or vanishing eigenvalues of fermion mass matrices, forced by the Z4 symmetry at τ = i, are removed by slightly deviating from the self-dual point. Relevant mass ratios are controlled by powers of |ϵ|. We present examples where this mechanism is a key ingredient to successfully implement an hierarchical spectrum in the lepton sector, even in the presence of a non-minimal Kähler potential.
2021
2021
5
1
26
242
https://doi.org/10.1007/JHEP05(2021)242
https://arxiv.org/abs/2101.08718
Feruglio, F.; Gherardi, V.; Romanino, A.; Titov, A.
File in questo prodotto:
File Dimensione Formato  
JHEP05(2021)242.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 529.97 kB
Formato Adobe PDF
529.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/137211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 75
social impact