In this paper we study the deterministic and stochastic homogenisation of free-discontinuity functionals under linear growth and coercivity conditions. The main novelty of our deterministic result is that we work under very general assumptions on the integrands which, in particular, are not required to be periodic in the space variable. Combining this result with the pointwise Subadditive Ergodic Theorem by Akcoglu and Krengel, we prove a stochastic homogenisation result, in the case of stationary random integrands. In particular, we characterise the limit integrands in terms of asymptotic cell formulas, as in the classical case of periodic homogenisation.

A global method for deterministic and stochastic homogenisation in BV / Cagnetti, F.; Dal Maso, G.; Scardia, L.; Zeppieri, C. I.. - In: ANNALS OF PDE. - ISSN 2199-2576. - 8:1(2022), pp. 1-89. [10.1007/s40818-022-00119-4]

A global method for deterministic and stochastic homogenisation in BV

Cagnetti F.;Dal Maso G.;Scardia L.;Zeppieri C. I.
2022-01-01

Abstract

In this paper we study the deterministic and stochastic homogenisation of free-discontinuity functionals under linear growth and coercivity conditions. The main novelty of our deterministic result is that we work under very general assumptions on the integrands which, in particular, are not required to be periodic in the space variable. Combining this result with the pointwise Subadditive Ergodic Theorem by Akcoglu and Krengel, we prove a stochastic homogenisation result, in the case of stationary random integrands. In particular, we characterise the limit integrands in terms of asymptotic cell formulas, as in the classical case of periodic homogenisation.
2022
8
1
1
89
8
https://doi.org/10.1007/s40818-022-00119-4
https://arxiv.org/abs/2101.04174
Cagnetti, F.; Dal Maso, G.; Scardia, L.; Zeppieri, C. I.
File in questo prodotto:
File Dimensione Formato  
Cag-DM-Sca-Zep-SISSA.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 592.25 kB
Formato Adobe PDF
592.25 kB Adobe PDF Visualizza/Apri
s40818-022-00119-4 (1).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/138154
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 4
social impact