We study Schrodinger operators with Floquet boundary conditions on flat tori obtaining a spectral result giving an asymptotic expansion of all the eigenvalues. The expansion is in $\lambda^{-\delta}$, with $\delta$ in (0,1), for most of the eigenvalues $\lambda$ (stable eigenvalues), while it is a "directional expansion" for the remaining eigenvalues (unstable eigenvalues). The proof is based on a structure theorem which is a variant of the one proved in [31,32] and on a new iterative quasimode argument.
Spectral asymptotics of all the eigenvalues of Schrödinger operators on flat tori / Bambusi, Dario; Langella, Beatrice; Montalto, Riccardo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 216:(2022), pp. 1-37. [10.1016/j.na.2021.112679]
Spectral asymptotics of all the eigenvalues of Schrödinger operators on flat tori
Langella, Beatrice;
2022-01-01
Abstract
We study Schrodinger operators with Floquet boundary conditions on flat tori obtaining a spectral result giving an asymptotic expansion of all the eigenvalues. The expansion is in $\lambda^{-\delta}$, with $\delta$ in (0,1), for most of the eigenvalues $\lambda$ (stable eigenvalues), while it is a "directional expansion" for the remaining eigenvalues (unstable eigenvalues). The proof is based on a structure theorem which is a variant of the one proved in [31,32] and on a new iterative quasimode argument.File | Dimensione | Formato | |
---|---|---|---|
resonant.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.