We prove a homogenization theorem for quadratic convolution energies defined in perforated domains. The corresponding limit is a Dirichlet-type quadratic energy, whose integrand is defined by a non-local cell-problem formula. The proof relies on an extension theorem from perforated domains belonging to a wide class containing compact periodic perforations.
Homogenization of quadratic convolution energies in periodically perforated domains / Braides, Andrea; Piatnitski, Andrey. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 15:3(2022), pp. 351-368. [10.1515/acv-2019-0083]
Homogenization of quadratic convolution energies in periodically perforated domains
Braides, Andrea;
2022-01-01
Abstract
We prove a homogenization theorem for quadratic convolution energies defined in perforated domains. The corresponding limit is a Dirichlet-type quadratic energy, whose integrand is defined by a non-local cell-problem formula. The proof relies on an extension theorem from perforated domains belonging to a wide class containing compact periodic perforations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1909.08713.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
241.36 kB
Formato
Adobe PDF
|
241.36 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.