We prove a homogenization theorem for quadratic convolution energies defined in perforated domains. The corresponding limit is a Dirichlet-type quadratic energy, whose integrand is defined by a non-local cell-problem formula. The proof relies on an extension theorem from perforated domains belonging to a wide class containing compact periodic perforations.

Homogenization of quadratic convolution energies in periodically perforated domains / Braides, Andrea; Piatnitski, Andrey. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 15:3(2022), pp. 351-368. [10.1515/acv-2019-0083]

Homogenization of quadratic convolution energies in periodically perforated domains

Braides, Andrea;
2022-01-01

Abstract

We prove a homogenization theorem for quadratic convolution energies defined in perforated domains. The corresponding limit is a Dirichlet-type quadratic energy, whose integrand is defined by a non-local cell-problem formula. The proof relies on an extension theorem from perforated domains belonging to a wide class containing compact periodic perforations.
2022
15
3
351
368
https://arxiv.org/abs/1909.08713
Braides, Andrea; Piatnitski, Andrey
File in questo prodotto:
File Dimensione Formato  
1909.08713.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 241.36 kB
Formato Adobe PDF
241.36 kB Adobe PDF Visualizza/Apri
10.1515_acv-2019-0083 (1).pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 763.44 kB
Formato Adobe PDF
763.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/138211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact