We prove that by scaling nearest-neighbour ferromagnetic energies defined on Poisson random sets in the plane one obtains an isotropic perimeter energy with a surface tension characterised by an asymptotic formula. The result relies on proving that cells with 'very long' or 'very short' edges of the corresponding Voronoi tessellation can be neglected. In this way we may apply Geometry Measure Theory tools to define a compact convergence, and a characterisation of metric properties of clusters of Voronoi cells using limit theorems for subadditive processes.

Homogenization of Ferromagnetic Energies on Poisson Random Sets in the Plane / Braides, Andrea; Piatnitski, Andrey. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 243:2(2022), pp. 433-458. [10.1007/s00205-021-01732-6]

Homogenization of Ferromagnetic Energies on Poisson Random Sets in the Plane

Braides, Andrea;
2022-01-01

Abstract

We prove that by scaling nearest-neighbour ferromagnetic energies defined on Poisson random sets in the plane one obtains an isotropic perimeter energy with a surface tension characterised by an asymptotic formula. The result relies on proving that cells with 'very long' or 'very short' edges of the corresponding Voronoi tessellation can be neglected. In this way we may apply Geometry Measure Theory tools to define a compact convergence, and a characterisation of metric properties of clusters of Voronoi cells using limit theorems for subadditive processes.
2022
243
2
433
458
https://arxiv.org/abs/2001.08919
Braides, Andrea; Piatnitski, Andrey
File in questo prodotto:
File Dimensione Formato  
2001.08919.pdf

non disponibili

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 247.61 kB
Formato Adobe PDF
247.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
s00205-021-01732-6.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 398.19 kB
Formato Adobe PDF
398.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/138212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact