We prove that by scaling nearest-neighbour ferromagnetic energies defined on Poisson random sets in the plane one obtains an isotropic perimeter energy with a surface tension characterised by an asymptotic formula. The result relies on proving that cells with 'very long' or 'very short' edges of the corresponding Voronoi tessellation can be neglected. In this way we may apply Geometry Measure Theory tools to define a compact convergence, and a characterisation of metric properties of clusters of Voronoi cells using limit theorems for subadditive processes.
Homogenization of Ferromagnetic Energies on Poisson Random Sets in the Plane / Braides, Andrea; Piatnitski, Andrey. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 243:2(2022), pp. 433-458. [10.1007/s00205-021-01732-6]
Homogenization of Ferromagnetic Energies on Poisson Random Sets in the Plane
Braides, Andrea;
2022-01-01
Abstract
We prove that by scaling nearest-neighbour ferromagnetic energies defined on Poisson random sets in the plane one obtains an isotropic perimeter energy with a surface tension characterised by an asymptotic formula. The result relies on proving that cells with 'very long' or 'very short' edges of the corresponding Voronoi tessellation can be neglected. In this way we may apply Geometry Measure Theory tools to define a compact convergence, and a characterisation of metric properties of clusters of Voronoi cells using limit theorems for subadditive processes.File | Dimensione | Formato | |
---|---|---|---|
2001.08919.pdf
non disponibili
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
247.61 kB
Formato
Adobe PDF
|
247.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
s00205-021-01732-6.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
398.19 kB
Formato
Adobe PDF
|
398.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.