We consider the well-known minimizing-movement approach to the definition of a solution of gradient-flow type equations by means of an implicit Euler scheme depending on an energy and a dissipation term. We perturb the energy by considering a (Gamma-converging) sequence and the dissipation by varying multiplicative terms. The scheme depends on two small parameters epsilon and tau, governing energy and time scales, respectively. We characterize the extreme cases when epsilon/tau and tau/epsilon converges to 0 sufficiently fast, and exhibit a sufficient condition that guarantees that the limit is indeed independent of epsilon and tau. We give examples showing that this in general is not the case, and apply this approach to study some discrete approximations, the homogenization of wiggly energies and geometric crystalline flows obtained as limits of ferromagnetic energies.

Perturbed minimizing movements of families of functionals / Braides, Andrea; Tribuzio, Antonio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1179. - 14:1(2021), pp. 373-393. [10.3934/dcdss.2020324]

Perturbed minimizing movements of families of functionals

Braides, Andrea;
2021-01-01

Abstract

We consider the well-known minimizing-movement approach to the definition of a solution of gradient-flow type equations by means of an implicit Euler scheme depending on an energy and a dissipation term. We perturb the energy by considering a (Gamma-converging) sequence and the dissipation by varying multiplicative terms. The scheme depends on two small parameters epsilon and tau, governing energy and time scales, respectively. We characterize the extreme cases when epsilon/tau and tau/epsilon converges to 0 sufficiently fast, and exhibit a sufficient condition that guarantees that the limit is indeed independent of epsilon and tau. We give examples showing that this in general is not the case, and apply this approach to study some discrete approximations, the homogenization of wiggly energies and geometric crystalline flows obtained as limits of ferromagnetic energies.
2021
14
1
373
393
Braides, Andrea; Tribuzio, Antonio
File in questo prodotto:
File Dimensione Formato  
1910.03260.pdf

non disponibili

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 450.41 kB
Formato Adobe PDF
450.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/138217
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact