Motivated by applications to image reconstruction, in this paper we analyse a finite-difference discretisation of the Ambrosio-Tortorelli functional. Denoted by epsilon the elliptic-approximation parameter and by delta the discretisation step-size, we fully describe the relative impact of epsilon and delta in terms of Gamma-limits for the corresponding discrete functionals, in the three possible scaling regimes. We show, in particular, that when epsilon and delta are of the same order, the underlying lattice structure affects the Gamma-limit which turns out to be an anisotropic free-discontinuity functional.

Quantitative analysis of finite-difference approximations of free-discontinuity problems / Bach, Annika; Braides, Andrea; Zeppieri, Caterina Ida. - In: INTERFACES AND FREE BOUNDARIES. - ISSN 1463-9963. - 22:3(2020), pp. 317-381. [10.4171/ifb/443]

Quantitative analysis of finite-difference approximations of free-discontinuity problems

Braides, Andrea;Zeppieri, Caterina Ida
2020-01-01

Abstract

Motivated by applications to image reconstruction, in this paper we analyse a finite-difference discretisation of the Ambrosio-Tortorelli functional. Denoted by epsilon the elliptic-approximation parameter and by delta the discretisation step-size, we fully describe the relative impact of epsilon and delta in terms of Gamma-limits for the corresponding discrete functionals, in the three possible scaling regimes. We show, in particular, that when epsilon and delta are of the same order, the underlying lattice structure affects the Gamma-limit which turns out to be an anisotropic free-discontinuity functional.
2020
22
3
317
381
https://arxiv.org/abs/1807.05346
Bach, Annika; Braides, Andrea; Zeppieri, Caterina Ida
File in questo prodotto:
File Dimensione Formato  
Bac-Bra-Zep-2018-Final.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 594.75 kB
Formato Adobe PDF
594.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/138219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact