We study the atomistic-to-continuum limit of a class of energy functionals for crystalline materials via Gamma-convergence. We consider energy densities that may depend on interactions between all points of the lattice, and we give conditions that ensure compactness and integral representation of the continuum limit on the space of special functions of bounded variation. This abstract result is complemented by a homogenization theorem, where we provide sufficient conditions on the energy densities under which bulk and surface contributions decouple in the limit. The results are applied to long-range and multibody interactions in the setting of weak-membrane energies.

Discrete-to-Continuum Limits of Multibody Systems with Bulk and Surface Long-Range Interactions / Bach, Annika; Braides, Andrea; Cicalese, Marco. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 52:4(2020), pp. 3600-3665. [10.1137/19m1289212]

Discrete-to-Continuum Limits of Multibody Systems with Bulk and Surface Long-Range Interactions

Braides, Andrea;Cicalese, Marco
2020-01-01

Abstract

We study the atomistic-to-continuum limit of a class of energy functionals for crystalline materials via Gamma-convergence. We consider energy densities that may depend on interactions between all points of the lattice, and we give conditions that ensure compactness and integral representation of the continuum limit on the space of special functions of bounded variation. This abstract result is complemented by a homogenization theorem, where we provide sufficient conditions on the energy densities under which bulk and surface contributions decouple in the limit. The results are applied to long-range and multibody interactions in the setting of weak-membrane energies.
2020
52
4
3600
3665
https://arxiv.org/abs/1910.00346
Bach, Annika; Braides, Andrea; Cicalese, Marco
File in questo prodotto:
File Dimensione Formato  
BaBrCi19.pdf

non disponibili

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 560.92 kB
Formato Adobe PDF
560.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
19m1289212.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 695.72 kB
Formato Adobe PDF
695.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/138220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact