Recently, the very first large-gap Kane-Mele quantum spin Hall insulator was predicted to be monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral discovered in Brazil in 2008. The stacking of quantum spin Hall monolayers into a van-der-Waals layered crystal typically leads to a (0;001) weak topological phase, which does not protect the existence of surface states on the (001) surface. Unexpectedly, recent angle-resolved photoemission spectroscopy experiments revealed the presence of surface states dispersing over large areas of the 001-surface Brillouin zone of jacutingaite single crystals. The 001-surface states have been shown to be topologically protected by a mirror Chern number CM=-2, associated with a nodal line gapped by spin-orbit interactions. Here, we extend the two-dimensional Kane-Mele model to bulk jacutingaite and unveil the microscopic origin of the gapped nodal line and the emerging crystalline topological order. By using maximally localized Wannier functions, we identify a large nontrivial second nearest-layer hopping term that breaks the standard paradigm of weak topological insulators. Complemented by this term, the predictions of the Kane-Mele model are in remarkable agreement with recent experiments and first-principles simulations, providing an appealing conceptual framework also relevant for other layered materials made of stacked honeycomb lattices.

Emergent dual topology in the three-dimensional Kane-Mele Pt2HgSe3 / Marrazzo, A.; Marzari, N.; Gibertini, M.. - In: PHYSICAL REVIEW RESEARCH. - ISSN 2643-1564. - 2:1(2020), pp. 1-6. [10.1103/PhysRevResearch.2.012063]

Emergent dual topology in the three-dimensional Kane-Mele Pt2HgSe3

Marrazzo, A.
;
Marzari, N.;
2020-01-01

Abstract

Recently, the very first large-gap Kane-Mele quantum spin Hall insulator was predicted to be monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral discovered in Brazil in 2008. The stacking of quantum spin Hall monolayers into a van-der-Waals layered crystal typically leads to a (0;001) weak topological phase, which does not protect the existence of surface states on the (001) surface. Unexpectedly, recent angle-resolved photoemission spectroscopy experiments revealed the presence of surface states dispersing over large areas of the 001-surface Brillouin zone of jacutingaite single crystals. The 001-surface states have been shown to be topologically protected by a mirror Chern number CM=-2, associated with a nodal line gapped by spin-orbit interactions. Here, we extend the two-dimensional Kane-Mele model to bulk jacutingaite and unveil the microscopic origin of the gapped nodal line and the emerging crystalline topological order. By using maximally localized Wannier functions, we identify a large nontrivial second nearest-layer hopping term that breaks the standard paradigm of weak topological insulators. Complemented by this term, the predictions of the Kane-Mele model are in remarkable agreement with recent experiments and first-principles simulations, providing an appealing conceptual framework also relevant for other layered materials made of stacked honeycomb lattices.
2020
2
1
1
6
012063(R)
https://doi.org/10.1103/PhysRevResearch.2.012063
https://arxiv.org/abs/1909.05050
Marrazzo, A.; Marzari, N.; Gibertini, M.
File in questo prodotto:
File Dimensione Formato  
PhysRevResearch.2.012063.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/138672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact