In this paper we prove the existence of a solution in L∞loc to the Euler-Lagrange equation for the variational problem inf (0.1) with convex closed subset of with non empty interior. We next show that if D* is strictly convex, then the Euler-Lagrange equation can be reduced to an ODE along characteristics, and we deduce that the solution to Euler-Lagrange is different from a.e. and satisfies a uniqueness property. Using these results, we prove a conjecture on the existence of variations on vector fields [6].

On the Euler-Lagrange equation for a variational problem / Bianchini, Stefano. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 17:3(2007), pp. 449-480. [10.3934/dcds.2007.17.449]

On the Euler-Lagrange equation for a variational problem

Bianchini, Stefano
2007-01-01

Abstract

In this paper we prove the existence of a solution in L∞loc to the Euler-Lagrange equation for the variational problem inf (0.1) with convex closed subset of with non empty interior. We next show that if D* is strictly convex, then the Euler-Lagrange equation can be reduced to an ODE along characteristics, and we deduce that the solution to Euler-Lagrange is different from a.e. and satisfies a uniqueness property. Using these results, we prove a conjecture on the existence of variations on vector fields [6].
2007
17
3
449
480
http://preprints.sissa.it/xmlui/handle/1963/1792
Bianchini, Stefano
File in questo prodotto:
File Dimensione Formato  
Bianchini1229.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 334.68 kB
Formato Adobe PDF
334.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/13870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact