The Euclid mission will conduct an extragalactic survey over 15 000 deg2 of the extragalactic sky. The spectroscopic channel of the Near-Infrared Spectrometer and Photometer (NISP) has a resolution of R~450 for its blue and red grisms that collectively cover the 0.93-1.89 μm range. NISP will obtain spectroscopic redshifts for 3 107 galaxies for the experiments on galaxy clustering, baryonic acoustic oscillations, and redshift space distortion. The wavelength calibration must be accurate within 5 A to avoid systematics in the redshifts and downstream cosmological parameters. The NISP pre-flight dispersion laws for the grisms were obtained on the ground using a Fabry-Perot etalon. Launch vibrations, zero gravity conditions, and thermal stabilisation may alter these dispersion laws, requiring an in-flight recalibration. To this end, we use the emission lines in the spectra of compact planetary nebulae (PNe), which were selected from a PN database. To ensure completeness of the PN sample, we developed a novel technique to identify compact and strong line emitters in Gaia spectroscopic data using the Gaia spectra shape coefficients. We obtained VLT/X-shooter spectra from 0.3 to 2.5 μm for 19 PNe in excellent seeing conditions and a wide slit, mimicking Euclid's slitless spectroscopy mode but with a ten times higher spectral resolution. Additional observations of one northern PN were obtained in the 0.80- 1.90 μm range with the GMOS and GNIRS instruments at the Gemini North Observatory. The collected spectra were combined into an atlas of heliocentric vacuum wavelengths with a joint statistical and systematic accuracy of 0.1 A in the optical and 0.3 A in the near-infrared. The wavelength atlas and the related 1D and 2D spectra are made publicly available.
Euclid preparation: XXVII. A UV-NIR spectral atlas of compact planetary nebulae for wavelength calibration / Paterson, K.; Schirmer, M.; Copin, Y.; Cuillandre, J. -C.; Gillard, W.; Gutiérrez Soto, L. A.; Guzzo, L.; Hoekstra, H.; Kitching, T.; Paltani, S.; Percival, W. J.; Scodeggio, M.; Stanghellini, L.; Appleton, P. N.; Laureijs, R.; Mellier, Y.; Aghanim, N.; Altieri, B.; Amara, A.; Auricchio, N.; Baldi, M.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Corcione, L.; Courbin, F.; Da Silva, A.; Degaudenzi, H.; Dinis, J.; Douspis, M.; Dubath, F.; Dupac, X.; Ferriol, S.; Frailis, M.; Franceschi, E.; Fumana, M.; Galeotta, S.; Garilli, B.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hornstrup, A.; Hudelot, P.; Jahnke, K.; Kümmel, M.; Kiessling, A.; Kilbinger, M.; Kohley, R.; Kubik, B.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Medinaceli, E.; Mei, S.; Meneghetti, M.; Meylan, G.; Moresco, M.; Moscardini, L.; Nakajima, R.; Niemi, S. -M.; Nightingale, J. W.; Nutma, T.; Padilla, C.; Pasian, F.; Pedersen, K.; Polenta, G.; Poncet, M.; Popa, L. A.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Rix, H. -W.; Romelli, E.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Sartoris, B.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Skottfelt, J.; Stanco, L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valenziano, L.; Vassallo, T.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.; Andreon, S.; Bardelli, S.; Bozzo, E.; Colodro-Conde, C.; Di Ferdinando, D.; Farina, M.; Graciá-Carpio, J.; Keihänen, E.; Lindholm, V.; Maino, D.; Mauri, N.; Scottez, V.; Tenti, M.; Zucca, E.; Akrami, Y.; Baccigalupi, C.; Ballardini, M.; Biviano, A.; Borlaff, A. S.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Castro, T.; Chambers, K. C.; Cooray, A. R.; Coupon, J.; Courtois, H. M.; Davini, S.; De Lucia, G.; Desprez, G.; Escartin, J. A.; Escoffier, S.; Ferrero, I.; Gabarra, L.; Garcia-Bellido, J.; George, K.; Giacomini, F.; Gozaliasl, G.; Hildebrandt, H.; Hook, I.; Kajava, J. J. E.; Kansal, V.; Kirkpatrick, C. C.; Legrand, L.; Loureiro, A.; Magliocchetti, M.; Mainetti, G.; Maoli, R.; Marcin, S.; Martinelli, M.; Martinet, N.; Martins, C. J. A. P.; Matthew, S.; Maurin, L.; Metcalf, R. B.; Monaco, P.; Morgante, G.; Nadathur, S.; Patrizii, L.; Pollack, J.; Porciani, C.; Potter, D.; Pöntinen, M.; Sánchez, A. G.; Sakr, Z.; Schneider, A.; Sefusatti, E.; Sereno, M.; Shulevski, A.; Stadel, J.; Steinwagner, J.; Valieri, C.; Valiviita, J.; Veropalumbo, A.; Viel, M.; Zinchenko, I. A.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 1432-0746. - 674:(2023). [10.1051/0004-6361/202346252]
Euclid preparation: XXVII. A UV-NIR spectral atlas of compact planetary nebulae for wavelength calibration
Guzzo, L.;Percival, W. J.;Baldi, M.;Camera, S.;Carbone, C.;Giocoli, C.;Kunz, M.;Mansutti, O.;Markovic, K.;Meneghetti, M.;Moresco, M.;Moscardini, L.;Renzi, A.;Romelli, E.;Sartoris, B.;Stanco, L.;Weller, J.;Maino, D.;Baccigalupi, C.;Burigana, C.;Cabanac, R.;Castignani, G.;De Lucia, G.;Legrand, L.;Magliocchetti, M.;Martinelli, M.;Metcalf, R. B.;Pollack, J.;Porciani, C.;Veropalumbo, A.;Viel, M.;
2023-01-01
Abstract
The Euclid mission will conduct an extragalactic survey over 15 000 deg2 of the extragalactic sky. The spectroscopic channel of the Near-Infrared Spectrometer and Photometer (NISP) has a resolution of R~450 for its blue and red grisms that collectively cover the 0.93-1.89 μm range. NISP will obtain spectroscopic redshifts for 3 107 galaxies for the experiments on galaxy clustering, baryonic acoustic oscillations, and redshift space distortion. The wavelength calibration must be accurate within 5 A to avoid systematics in the redshifts and downstream cosmological parameters. The NISP pre-flight dispersion laws for the grisms were obtained on the ground using a Fabry-Perot etalon. Launch vibrations, zero gravity conditions, and thermal stabilisation may alter these dispersion laws, requiring an in-flight recalibration. To this end, we use the emission lines in the spectra of compact planetary nebulae (PNe), which were selected from a PN database. To ensure completeness of the PN sample, we developed a novel technique to identify compact and strong line emitters in Gaia spectroscopic data using the Gaia spectra shape coefficients. We obtained VLT/X-shooter spectra from 0.3 to 2.5 μm for 19 PNe in excellent seeing conditions and a wide slit, mimicking Euclid's slitless spectroscopy mode but with a ten times higher spectral resolution. Additional observations of one northern PN were obtained in the 0.80- 1.90 μm range with the GMOS and GNIRS instruments at the Gemini North Observatory. The collected spectra were combined into an atlas of heliocentric vacuum wavelengths with a joint statistical and systematic accuracy of 0.1 A in the optical and 0.3 A in the near-infrared. The wavelength atlas and the related 1D and 2D spectra are made publicly available.File | Dimensione | Formato | |
---|---|---|---|
aa46252-23.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.68 MB
Formato
Adobe PDF
|
6.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.