We study some lower semicontinuity properties of polyconvex integrals of the form integral(OMEGA)f(M(delu)) dx, where OMEGA subset-of R(n), u: OMEGA --> R(m), and M(delu) denotes the family of the determinants of all minors of the gradient matrix delu. In particular, we study the lower semicontinuity along sequences converging strongly in L1(OMEGA, R(m)) when the integrand depends only on the minors of delu up to a given order, and the lower semicontinuity along sequences converging strongly in L1(OMEGA, R(n)) and bounded in W1,n-1 (OMEGA, R(n)) in the special case m = n.
Further remarks on the lower semicontinuity of polyconvex integrals / Celada, P.; DAL MASO, G. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 11:6(1994), pp. 661-691. [10.1016/S0294-1449(16)30173-1]
Further remarks on the lower semicontinuity of polyconvex integrals
DAL MASO G
1994-01-01
Abstract
We study some lower semicontinuity properties of polyconvex integrals of the form integral(OMEGA)f(M(delu)) dx, where OMEGA subset-of R(n), u: OMEGA --> R(m), and M(delu) denotes the family of the determinants of all minors of the gradient matrix delu. In particular, we study the lower semicontinuity along sequences converging strongly in L1(OMEGA, R(m)) when the integrand depends only on the minors of delu up to a given order, and the lower semicontinuity along sequences converging strongly in L1(OMEGA, R(n)) and bounded in W1,n-1 (OMEGA, R(n)) in the special case m = n.File | Dimensione | Formato | |
---|---|---|---|
Cel-DM-AnnIHP1994.pdf
non disponibili
Licenza:
Non specificato
Dimensione
2.46 MB
Formato
Adobe PDF
|
2.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.