We present recent existence results of quasi-periodic solutions for Schrodinger equations with a multiplicative potential on Td , finitely di¤erentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. The proofs are based on an improved Nash–Moser iterative scheme and a new multiscale inductive analysis for the inverse linearized operators.
Quasi-periodic solutions of Nonlinear Schrodinger on T-d / Berti, Massimiliano; Bolle, P.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 22:2(2011), pp. 223-236. [10.4171/RLM/597]
Quasi-periodic solutions of Nonlinear Schrodinger on T-d
Berti, Massimiliano;
2011-01-01
Abstract
We present recent existence results of quasi-periodic solutions for Schrodinger equations with a multiplicative potential on Td , finitely di¤erentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. The proofs are based on an improved Nash–Moser iterative scheme and a new multiscale inductive analysis for the inverse linearized operators.File | Dimensione | Formato | |
---|---|---|---|
2011-022-002-08.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
128.37 kB
Formato
Adobe PDF
|
128.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.