We study necessary and sufficient conditions for the lower-semicontinuity of one-dimensional energies defined on (BV and) SBV of the model form F(u) = sup f (u′) V sup g ([u]), and prove a relaxation theorem. We apply these results to the study of problems with Dirichlet boundary conditions, highlighting a complex behaviour of solutions. We draw a comparison with the parallel theory for integral energies on SBV.

L∞ energies on discontinuous functions / Alicandro, R.; Braides, A.; Cicalese, M.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B.. - ISSN 1531-3492. - 12:5(2005), pp. 905-928.

L∞ energies on discontinuous functions

Alicandro, R.;Braides, A.
;
Cicalese, M.
2005-01-01

Abstract

We study necessary and sufficient conditions for the lower-semicontinuity of one-dimensional energies defined on (BV and) SBV of the model form F(u) = sup f (u′) V sup g ([u]), and prove a relaxation theorem. We apply these results to the study of problems with Dirichlet boundary conditions, highlighting a complex behaviour of solutions. We draw a comparison with the parallel theory for integral energies on SBV.
2005
12
5
905
928
Alicandro, R.; Braides, A.; Cicalese, M.
File in questo prodotto:
File Dimensione Formato  
2003ABC.pdf

non disponibili

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 12.47 MB
Formato Adobe PDF
12.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/139450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact