A homogenization theorem is proved for energies which follow the geometry of an a-periodic Penrose tiling. The result is obtained by proving that the corresponding energy densities are W1-almost periodic and hence also Besicovitch almost periodic, so that existing general homogenization theorems can be applied (Braides, 1986). The method applies to general quasicrystalline geometries. To cite this article: A. Braides et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences.
Homogenization of Penrose tilings / Braides, A.; Riey, G.; Solci, M.. - In: COMPTES RENDUS MATHÉMATIQUE. - ISSN 1631-073X. - 347:11-12(2009), pp. 697-700. [10.1016/j.crma.2009.03.019]
Homogenization of Penrose tilings
Braides A.;
2009-01-01
Abstract
A homogenization theorem is proved for energies which follow the geometry of an a-periodic Penrose tiling. The result is obtained by proving that the corresponding energy densities are W1-almost periodic and hence also Besicovitch almost periodic, so that existing general homogenization theorems can be applied (Braides, 1986). The method applies to general quasicrystalline geometries. To cite this article: A. Braides et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.