We prove a homogenization theorem for non-convex functionals depending on vector-valued functions, defined on Sobolev spaces with respect to oscillating measures. The proof combines the use of the localization methods of Γ-convergence with a 'discretization' argument, which allows to link the oscillating energies to functionals defined on a single Lebesgue space. and to state the hypothesis of p-connectedness of the underlying periodic measure in a handy way. © American Institute of Mathematical Sciences.

Non convex homogenization problems for singular structures / Braides, A.; Chiado Piat, V.. - In: NETWORKS AND HETEROGENEOUS MEDIA. - ISSN 1556-1801. - 3:3(2008), pp. 489-508. [10.3934/nhm.2008.3.489]

Non convex homogenization problems for singular structures

Braides A.;
2008-01-01

Abstract

We prove a homogenization theorem for non-convex functionals depending on vector-valued functions, defined on Sobolev spaces with respect to oscillating measures. The proof combines the use of the localization methods of Γ-convergence with a 'discretization' argument, which allows to link the oscillating energies to functionals defined on a single Lebesgue space. and to state the hypothesis of p-connectedness of the underlying periodic measure in a handy way. © American Institute of Mathematical Sciences.
2008
3
3
489
508
Braides, A.; Chiado Piat, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/139530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact