We prove the result stated in the title; it is equivalent to the existence of a regular point of the sub-Riemannian exponential mapping. We also prove that the metric is analytic on an open everywhere dense subset in the case of a complete real-analytic sub-Riemannian manifold.
Any sub-Riemannian metric has points of smoothness / Agrachev, A.. - In: DOKLADY MATHEMATICS. - ISSN 1064-5624. - 79:1(2009), pp. 45-47. [10.1134/S106456240901013X]
Any sub-Riemannian metric has points of smoothness
Agrachev, A.
2009-01-01
Abstract
We prove the result stated in the title; it is equivalent to the existence of a regular point of the sub-Riemannian exponential mapping. We also prove that the metric is analytic on an open everywhere dense subset in the case of a complete real-analytic sub-Riemannian manifold.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
smooth.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
149.45 kB
Formato
Adobe PDF
|
149.45 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.