Recent investigations on active materials have introduced a new paradigm for soft robotics by showing that a complex response can be obtained from simple stimuli by harnessing dynamic instabilities. In particular, polyelectrolyte hydrogel filaments actuated by a constant electric field have been shown to exhibit self-sustained oscillations as a consequence of flutter instability. Owing to the nonreciprocal nature of the emerging oscillations, these artificial cilia are able to generate flows along the stimulus. Building upon these findings, in this paper we propose a design strategy to break the left-right symmetry in the generated flows, by endowing the filament with a natural curvature at the fabrication stage. We develop a mathematical model based on morphoelastic rod theory to characterize the stability of the equilibrium configurations of the filament, proving the persistence of flutter instability. We show that the emerging oscillations are nonreciprocal and generate thrust at an angle with the stimulus. The results we find at the level of the single cilium open new perspectives on the possible applications of artificial ciliary arrays in soft robotics and microfluidics.

Breaking the left-right symmetry in fluttering artificial cilia that perform nonreciprocal oscillations / Boiardi, Ariel Surya; Marchello, Roberto. - In: MECCANICA. - ISSN 0025-6455. - (2024). [10.1007/s11012-024-01765-7]

Breaking the left-right symmetry in fluttering artificial cilia that perform nonreciprocal oscillations

Boiardi, Ariel Surya
;
Marchello, Roberto
2024-01-01

Abstract

Recent investigations on active materials have introduced a new paradigm for soft robotics by showing that a complex response can be obtained from simple stimuli by harnessing dynamic instabilities. In particular, polyelectrolyte hydrogel filaments actuated by a constant electric field have been shown to exhibit self-sustained oscillations as a consequence of flutter instability. Owing to the nonreciprocal nature of the emerging oscillations, these artificial cilia are able to generate flows along the stimulus. Building upon these findings, in this paper we propose a design strategy to break the left-right symmetry in the generated flows, by endowing the filament with a natural curvature at the fabrication stage. We develop a mathematical model based on morphoelastic rod theory to characterize the stability of the equilibrium configurations of the filament, proving the persistence of flutter instability. We show that the emerging oscillations are nonreciprocal and generate thrust at an angle with the stimulus. The results we find at the level of the single cilium open new perspectives on the possible applications of artificial ciliary arrays in soft robotics and microfluidics.
2024
10.1007/s11012-024-01765-7
Boiardi, Ariel Surya; Marchello, Roberto
File in questo prodotto:
File Dimensione Formato  
Boiardi and Marchello - 2024 - Breaking the left-right symmetry in fluttering art.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/140230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact