This note deals with the equivalence between the optimality of a transport plan for the Monge-Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome of the construction in [7]. We emphasize the measurability assumption on the hidden structure of linear preorder, applied also to extremality and uniqueness problems. Resume. Dans la presente note nous decrivons brievement la construction introduite dans [7] a propos de l'equivalence entre l'optimalite d'un plan de transport pour le probleme de Monge-Kantorovich et la condition de monotonie c-cyclique ainsi que d'autres sujets que cela nous amene a aborder. Nous souhaitons mettre en evidence l'hypothese de mesurabilite sur la structure sous-jacente de pre-ordre lineaire.
On optimality of c-cyclically monotone transference plans / Bianchini, S.; Caravenna, L.. - In: COMPTES RENDUS MATHÉMATIQUE. - ISSN 1631-073X. - 348:11-12(2010), pp. 613-618. [10.1016/j.crma.2010.03.022]
On optimality of c-cyclically monotone transference plans
Bianchini, S.;Caravenna, L.
2010-01-01
Abstract
This note deals with the equivalence between the optimality of a transport plan for the Monge-Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome of the construction in [7]. We emphasize the measurability assumption on the hidden structure of linear preorder, applied also to extremality and uniqueness problems. Resume. Dans la presente note nous decrivons brievement la construction introduite dans [7] a propos de l'equivalence entre l'optimalite d'un plan de transport pour le probleme de Monge-Kantorovich et la condition de monotonie c-cyclique ainsi que d'autres sujets que cela nous amene a aborder. Nous souhaitons mettre en evidence l'hypothese de mesurabilite sur la structure sous-jacente de pre-ordre lineaire.File | Dimensione | Formato | |
---|---|---|---|
bozzaFrench2.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Non specificato
Dimensione
188.92 kB
Formato
Adobe PDF
|
188.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.