This note deals with the equivalence between the optimality of a transport plan for the Monge-Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome of the construction in [7]. We emphasize the measurability assumption on the hidden structure of linear preorder, applied also to extremality and uniqueness problems. Resume. Dans la presente note nous decrivons brievement la construction introduite dans [7] a propos de l'equivalence entre l'optimalite d'un plan de transport pour le probleme de Monge-Kantorovich et la condition de monotonie c-cyclique ainsi que d'autres sujets que cela nous amene a aborder. Nous souhaitons mettre en evidence l'hypothese de mesurabilite sur la structure sous-jacente de pre-ordre lineaire.

On optimality of c-cyclically monotone transference plans / Bianchini, S.; Caravenna, L.. - In: COMPTES RENDUS MATHÉMATIQUE. - ISSN 1631-073X. - 348:11-12(2010), pp. 613-618. [10.1016/j.crma.2010.03.022]

On optimality of c-cyclically monotone transference plans

Bianchini, S.;Caravenna, L.
2010-01-01

Abstract

This note deals with the equivalence between the optimality of a transport plan for the Monge-Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome of the construction in [7]. We emphasize the measurability assumption on the hidden structure of linear preorder, applied also to extremality and uniqueness problems. Resume. Dans la presente note nous decrivons brievement la construction introduite dans [7] a propos de l'equivalence entre l'optimalite d'un plan de transport pour le probleme de Monge-Kantorovich et la condition de monotonie c-cyclique ainsi que d'autres sujets que cela nous amene a aborder. Nous souhaitons mettre en evidence l'hypothese de mesurabilite sur la structure sous-jacente de pre-ordre lineaire.
2010
348
11-12
613
618
https://doi.org/10.1016/j.crma.2010.03.022
http://preprints.sissa.it/xmlui/handle/1963/4023
Bianchini, S.; Caravenna, L.
File in questo prodotto:
File Dimensione Formato  
bozzaFrench2.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 188.92 kB
Formato Adobe PDF
188.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact