In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incom-pressible Euler equations assuming that the symmetric part of the gradient belongs to Lac([0, +infinity); Lexp(Rd ; Rdxd)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray-Hopf weak solutions of the Navier-Stokes equations.(c) 2023 Elsevier Inc. All rights reserved.
Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces / De Rosa, Luigi; Inversi, Marco; Stefani, Giorgio. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 366:(2023), pp. 833-861. [10.1016/j.jde.2023.05.019]
Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces
Stefani, Giorgio
2023-01-01
Abstract
In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incom-pressible Euler equations assuming that the symmetric part of the gradient belongs to Lac([0, +infinity); Lexp(Rd ; Rdxd)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray-Hopf weak solutions of the Navier-Stokes equations.(c) 2023 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
De Rosa, Inversi, Stefani - Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
399.5 kB
Formato
Adobe PDF
|
399.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.