In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incom-pressible Euler equations assuming that the symmetric part of the gradient belongs to Lac([0, +infinity); Lexp(Rd ; Rdxd)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray-Hopf weak solutions of the Navier-Stokes equations.(c) 2023 Elsevier Inc. All rights reserved.

Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces / De Rosa, Luigi; Inversi, Marco; Stefani, Giorgio. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 366:(2023), pp. 833-861. [10.1016/j.jde.2023.05.019]

Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces

Stefani, Giorgio
2023-01-01

Abstract

In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incom-pressible Euler equations assuming that the symmetric part of the gradient belongs to Lac([0, +infinity); Lexp(Rd ; Rdxd)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray-Hopf weak solutions of the Navier-Stokes equations.(c) 2023 Elsevier Inc. All rights reserved.
2023
366
833
861
https://arxiv.org/abs/2204.12779
De Rosa, Luigi; Inversi, Marco; Stefani, Giorgio
File in questo prodotto:
File Dimensione Formato  
De Rosa, Inversi, Stefani - Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 399.5 kB
Formato Adobe PDF
399.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/140474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact