We consider the isoperimetric problem for clusters in the plane with a double density, that is, perimeter and volume depend on two weights. In this paper, we consider the isotropic case, in the parallel paper [V. Franceschi, A. Pratelli and G. Stefani, On the Steiner property for planar minimizing clusters. The anisotropic case, preprint (2020)] the anisotropic case is studied. Here we prove that, in a wide generality, minimal clusters enjoy the "Steiner property", which means that the boundaries are made by C-1,C-gamma regular arcs, meeting in finitely many triple points with the 120 degrees property.

On the Steiner property for planar minimizing clusters. The isotropic case / Franceschi, Valentina; Pratelli, Aldo; Stefani, Giorgio. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 25:05(2023), pp. 1-29. [10.1142/s0219199722500407]

On the Steiner property for planar minimizing clusters. The isotropic case

Stefani, Giorgio
2023-01-01

Abstract

We consider the isoperimetric problem for clusters in the plane with a double density, that is, perimeter and volume depend on two weights. In this paper, we consider the isotropic case, in the parallel paper [V. Franceschi, A. Pratelli and G. Stefani, On the Steiner property for planar minimizing clusters. The anisotropic case, preprint (2020)] the anisotropic case is studied. Here we prove that, in a wide generality, minimal clusters enjoy the "Steiner property", which means that the boundaries are made by C-1,C-gamma regular arcs, meeting in finitely many triple points with the 120 degrees property.
2023
25
05
1
29
2250040
https://arxiv.org/abs/2106.08103
Franceschi, Valentina; Pratelli, Aldo; Stefani, Giorgio
File in questo prodotto:
File Dimensione Formato  
Franceschi, Pratelli, Stefani - On the Steiner property for planar minimizing clusters. The isotropic case.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 458.95 kB
Formato Adobe PDF
458.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/140478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact